Sofia University

Saint Kliment Ohridski

DEPARTMENT FOR LANGUAGE TEACHING
AND INTERNATIONAL STUDENTS

ALTE Member

A Differential Item Functioning Study for Less Widely-Taught Languages

Authors:

Mardik Andonyan, Ph.D.
Julia Todorinova

The study targeted:

* items that might show bias against some significant groups of test-takers
\& further improvement of Standardized Test in Bulgarian at B2 level

The Tested population consisted of 480 test-takers distributed as follows:

$* 345$ foreign students at the Department for Language Teaching
$\star 100$ individual test-takers at the Department
$\otimes 35$ individual test-takers at our examination centre in Thessaloniki, Greece.

Significant Groups of examinees were formed in regard to:

* Native tongue
* Gender
* Age
\&Education

Native tondue oroups Native tongue (L1) groups

Gender and Age Groups

Education Level Groups

Education level groups

Higher
Secondary
87 393

DIF detecting methodology used:

* The nonparametric MH procedure of Mantel and Haenszel, proposed by Holland and Thayer in 1988 * MH Δ-DIF statistic compares the odds of a correct response to an item for the focal group to that of the reference group.

DIF Detecting Software

\& Most of DIF detecting computer programmes are designed to operate with huge amount of input data.
\& They calculate the odds of a correct response to an item for the focal and reference groups over each test score point.

* They do not work with relatively sma samples of input data.

Overcoming the problem

EZDIF computer programme written by Niels G. Waller was used to analyze the uniform and non-uniform DIF because it handles problems of virtually any size.

Overcoming the problem

EZDIF computer programme provides user with control over conditioning-level bin widths, which is very important for small samples that are not large enough to cover each score point with necessary representatives from both reference and focal groups.

Ability Levels Defined

Five ability levels were defined for the purpose of our DIF study as follows:

Ability level	F	D	C	B	A
Score	0	13	24	30	38
range	12	23	29	37	45

EZDIF software features

EZDIF measures DIF in two ways:
a) with the Mantel-Haenszel (Holland and Thayer, 1988) procedure the uniform DIF is detected and measured;
b) with the Logistic Regression (Narayanan \& Swaminathan, 1996) procedure non-uniform DIF can be detected.

EZDIF software features

\& It allows using the real test item labels.
\& It analyzes DIF in a two-stage manner so that items showing large DIF in the first stage are automatically removed from the matching variable in the second stage.
\& It is a completely free software.

ETS (Educational Testing Service) DIF classification

\& A- level or negligible DIF \& B- level or moderate DIF \& C-level or large DIF

EZDIF software output

\star common odds ratio α

* Mantel-Haenszel chi-square statistics χ^{2} and its significance level
\otimes MH Δ-DIF statistic and its standard error
\& ETS DIF size code A, B or C
\& Empirical Item Characteristic Curves
\& Logistic Regression output

EZDIF output for MantelHaenszel procedure

Screenshot:

Results for Pass Number: 1

SE

ETS	ITEM	Alpha	X^2 $^{\wedge}$	P-Value	MHD-DIF	(MHD-DIF)
A	201	1.160	0.071	0.790	0.348	0.799
A	202	1.141	0.051	0.821	0.309	0.786
A	203	0.938	0.009	0.925	0.149	0.645
A	204	0.619	2.482	0.115	1.129	0.661
A	205	1.285	0.443	0.506	-0.589	0.717
A	206	0.930	0.007	0.936	0.170	0.725
A	207	1.124	0.047	0.828	-0.274	0.739

Interpreting EZDIF output for Mantel- Haenszel procedure

\& The MH technique is very simple, easy to implement, does not require large sample sizes and also provides statistics that have tests of signifficance.

* Size effect of uniform DIF is easily detected by ETS codes - A, B or C.
\& However, it is not powerful in detectin nonuniform DIF.

The output for Swaminathan and Rogers Logistic Regression procedure

Screenshot:

The output for Swaminathan and Rogers Logistic Regression procedure

* An item exhibits uniform DIF if the Group statistics is different from 0 , and Trait x Group statistics is 0 .
\& If Trait x Group statistics is different from 0 , then nonuniform DIF is present irrespective of the Group statistics.

Item Characteristic Curves

Item 302 Characteristic Curve

1.00				
0.80				
0.60				
0.40				
0.20				
0.00	D	C	B	A
\rightarrow Refer. group	0.40	0.61	0.91	0.95
- Focal group	0.43	0.55	0.94	0.95

Mantel-Haenszel Gender DIF Results

Level of DIF	Number of items	List of ltems	Flagged ltems	Removed ltems
Negligible (A-level)	42			
Moderate (B level)	3	223,307, 312	223,307, 312	
Large (C-level)	none			none

Sample Item Curves

(a) Gender Unbiased liem

Sample Item Curves

(b) Flagged Item (Moderate Uniform DIF)

Sample Item Curves

(c) Item with negligible nonuniform bias

Non-Uniform Gender DIF Item 306 Class A

$— \hookleftarrow$ Reference (male) —ぃ—Focal (female)

Group name	Absolute size	Percentage
Turkish	220	45.84%
Greek	146	30.41%
Other	114	23.75%

Mantel-Haenszel First Pass native tongue (L1) DIF results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	39			
Moderate (B level)	5	$\mathbf{2 1 3 , 2 1 4 ,}$ $\mathbf{2 2 4 , 3 1 6}$, 320	213, 214, 316,320	224
Large (C-level)	1	318		318

Mantel-Haenszel DIF Results

 Second pass after removing items 224 and 318| Level of
 DIF | Number of
 items | List of
 ltems | Flagged
 ltems | Removed
 ltems |
| :---: | :---: | :---: | :---: | :---: |
| Negligible
 (A-level) | 38 | | | |
| Moderate
 (B level) | 5 | 213,214,
 301,313,
 320 | 320 | 224 |
| Large
 (C-level) | 0 | 0 | | 318 |

Typical Item Curves for L1 bias

(a) L1 Unbiased Item

Typical Item Curves for L1 bias

(b) Item with negligible nonuniform L1 bias

Negligible Nonuniform L1 Bias Item 217 Class A
—— Reference (L1 Other) ———Focal (L1 Turkish)

Typical Item Curves for L1 bias

(c) Removed item with large uniform L1 bias

L1 DIF analyses Greek versus Others

 Mantel-Haenszel DIF Results| Level of
 DIF | Number of
 items | List of
 ltems | Flagged
 ltems | Removed
 Items |
| :---: | :---: | :---: | :---: | :---: |
| Negligible
 (A-level) | 41 | | | |
| Moderate
 (B level) | 4 | 203,213,
 219,224 | 213 | $224-$
 already
 removed |
| Large
 (C-level) | none | | | none |

L1 DIF analyses Greek versus Others

(a) Unbiased item

L1 Unbiased Item 220 Class A

—— Reference (L1 Other) ———Focal (L1 Greek)

L1 DIF analyses Greek versus Others

(b) Item with moderate uniform DIF

L1 DIF analyses Greek versus Others

(c) Item with moderate nonuniform DIF

L1 DIF analyses Greek versus Turkish Mantel-Haenszel DIF Results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	39			
Moderate (B level)	5	213,219, 316, 318,320	213	
Large (C-level)	1	224		$224-$ already removed

DIF analysis against age bias

Examined population samples

Group name	Size	Percentage
Young $(<=20$ years $)$	282	58.75%
Older $(>20$ years $)$	197	41.25

DIF analysis against age

 bias
Mantel-Haenszel age DIF Results

Level of DIF	Number of items	List of ltems	Flagged ltems	Remove d ltems
Negligible (A-level)	35			
Moderate (B level)	10	201,204, 301,304, 310,319, 320	304	
Large (C-level)	none			

DIF analysis against age bias

(a) Unbiased item

DIF analysis against age bias (b) Item with moderate uniform age DIF

DIF analysis against education level bias

Examined population samples

Group name	Size	Percentage
Secondary	393	81.88%
Higher	87	18.12%

DIF analysis against educrationHeeretzias Results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	41			
Moderate (B level)	3	201,308, 310	201,310	
Large (C-level)	1	320		$320-$ already removed

Mantel-Haenszel DIF Results Summary Table

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Bias Free or Negligible (A-level)	27	$\begin{aligned} & \text { 202, 205, 206,. } \\ & 207,208,209,210, \\ & 211,212,215,216, \\ & 217,218,220,221, \\ & 222,225,302,303, \\ & 305,306,309,311, \\ & 314,315,316,317, \end{aligned}$		
Moderate (B level)	16	$\begin{aligned} & \text { 201, 203, 204, 213, } \\ & 214,219,223,301, \\ & 304,307,308,310, \\ & 312,313,319,320 \end{aligned}$	6 item as follows: $\begin{aligned} & 213,219,301, \\ & 304,310,320 \end{aligned}$	1
Large (C-level)	2	224, 318		2 iten 224 を 318

Mantel-Haenszel DIF Results Summary

(1) 27 out of 45 items (60%) are bias free or demonstrate negligible bias - ETS code A
(2) 16 out of 45 items ($35,5 \%$) demonstrate moderate bias - EST code B.
(3) 2 out of 45 items ($4,5 \%$) demonstrate large bias - EST code C.

Mantel-Haenszel DIF Results Summary

(4) 6 out of 45 items (13\%), which have code B and appear in more than one bias list are flagged for further investigation.
(5) 2 out of 45 items (4,5\%) demonstrating large bias - ETS code C, are removed from the test.

Conclusions

1. The conducted DIF analyses were directed to the most significant groups presented in the tested population.

Conclusions

2. The investigation revealed no or very small amount of DIF against the gender, age and education level.
This is a fact of great importance for us, because almost all of our individual test-takers fall into these groups.

Conclusions

3. Some negligible to moderate DIF was detected against the candidates having Turkish as L1. In fact, this was the largest group of students, taught at the Department, and they did consist 46% of the tested population.

Conclusions

This does not mean at all that the test items are flawed, but we do suggest that part of the problems are due to a combination of factors such as discipline, motivation to work hard, attendance in language classes, background, culture, etc.

Conclusions

4. We suggest that more information below the mean of the test score distribution would be desirable in future. This might be accomplished by substituting the easiest test items with items capable to enhance measurement precision for candidates tending to score much over the mean of the test score distribution.

Thank you for your attention

Paris, April 2014

