Sofia University Saint Kliment Ohridski

DEPARTMENT FOR LANGUAGE TEACHING AND INTERNATIONAL STUDENTS

ALTE Member

A Differential Item Functioning Study for Less Widely-Taught Languages

Authors:

Mardik Andonyan, Ph.D. Julia Todorinova

The study targeted:

items that might show bias against some significant groups of test-takers
further improvement of Standardized Test in Bulgarian at B2 level

The Tested population consisted of 480 test-takers distributed as follows:

- * 345 foreign students at the Department for Language Teaching
- *100 individual test-takers at the Department
- * 35 individual test-takers at our examination centre in Thessaloniki, Greece.

Significant Groups of examinees were formed in regard to:

Native tongue

- Sender
- & Age

Education

Native tongue (L1) groups

Education Level Groups

DIF detecting methodology used:

The nonparametric MH procedure of Mantel and Haenszel, proposed by **Holland and Thayer in 1988** odds of a correct response to an item for the focal group to that of the reference group.

DIF Detecting Software

- Solution State Activity State Act
- * They calculate the odds of a correct response to an item for the focal and reference groups over each test score point.
- They do not work with relatively small samples of input data.

Overcoming the problem

EZDIF computer programme written by Niels G. Waller was used to analyze the uniform and non-uniform DIF because it handles problems of virtually any size.

Overcoming the problem

EZDIF computer programme provides user with control over conditioning-level bin widths, which is very important for small samples that are not large enough to cover each score point with necessary representatives from both reference and focal groups.

Ability Levels Defined

Five ability levels were defined for the purpose of our DIF study as follows:

Ability	F	D	~	D	Δ
level	F	D	C	В	A
Score	0	13	24	30	38
range	12	23	29	37	45

EZDIF software features

EZDIF measures DIF in two ways: a) with the Mantel-Haenszel (Holland and Thayer, 1988) procedure the uniform DIF is detected and measured; b) with the Logistic Regression (Narayanan & Swaminathan, 1996) procedure non-uniform DIF can be detected.

EZDIF software features

- It allows using the real test item labels.
- It analyzes DIF in a two-stage manner so that items showing large DIF in the first stage are automatically removed from the matching variable in the second stage.
- It is a completely free software.

ETS (Educational Testing Service) DIF classification

A- level or negligible DIF
B- level or moderate DIF
C-level or large DIF

EZDIF software output

 \Rightarrow common odds ratio α \Rightarrow Mantel-Haenszel chi-square statistics χ^2 and its significance level *** ETS DIF size code A, B or C** Empirical Item Characteristic Curves
 Logistic Regression output

EZDIF output for Mantel-Haenszel procedure

Screenshot:

Results	for	Pass	Number:	1
---------	-----	------	---------	---

						9F
ETS	ITEM	Alpha	X^2	P-Value	MHD-DIF	(MHD-DIF)
A	201	1.160	0.071	0.790	0.348	0.799
A	202	1.141	0.051	0.821	0.309	0.786
A	203	0.938	0.009	0.925	0.149	0.645
A	204	0.619	2.482	0.115	1.129	0.661
A	205	1.285	0.443	0.506	-0.589	0.717
A	206	0.930	0.007	0.936	0.170	0.725
А	207	1.124	0.047	0.828	-0.274	0.739

CITI

Interpreting EZDIF output for Mantel- Haenszel procedure

The MH technique is very simple, easy to implement, does not require large sample sizes and also provides statistics that have tests of significance. Size effect of uniform DIF is easily detected by ETS codes – A, B or C. However, it is not powerful in detecting nonuniform **DIF**.

The output for Swaminathan and Rogers Logistic Regression procedure

Screenshot:

Item · Number: 209 · · Estimate · · SE · Estim · Z · · · · · · · · p-value¶ Intercept · · · · · -1.871244 · · 0.483211 · -3.872519 · · 0.000115¶ Trait · · · · · · · · 0.110279 · · 0.013925 · · 7.919373 · · 0.000000¶ Group · · · · · · · · 0.060784 · · 0.881146 · · 0.068983 · · 0.945017¶ Trait · x · Group · · · -0.007219 · · 0.027850 · -0.259212 · · 0.795525¶ The output for Swaminathan and Rogers Logistic Regression procedure

An item exhibits uniform DIF if the Group statistics is different from 0, and Trait x Group statistics is 0.

If Trait x Group statistics is different from 0, then nonuniform DIF is present irrespective of the Group statistics.

Item Characteristic Curves

Item 302 Characteristic Curve

Mantel-Haenszel Gender DIF Results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	42			
Moderate (B level)	3	223, 307, 312	223, 307, 312	
Large (C-level)	none			none

Sample Item Curves

(a) Gender Unbiased Item

Sample Item Curves

(b) Flagged Item (Moderate Uniform DIF)

Sample Item Curves

(c) Item with negligible nonuniform bias

DIF analysis against native tongue (L1) bias

Group name	Absolute size	Percentage
Turkish	220	45.84%
Greek	146	30.41%
Other	114	23.75%

Mantel-Haenszel First Pass native tongue (L1) DIF results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	39			
Moderate (B level)	5	213,214, 224, 316, 320	213, 214, 316, 320	224
Large (C-level)	1	318		318

Mantel-Haenszel DIF Results Second pass after removing items 224 and 318

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	38			
Moderate (B level)	5	213,214, 301, 313, 320	320	224
Large (C-level)	0	0		318

Typical Item Curves for L1 bias

(a) L1 Unbiased Item

Typical Item Curves for L1 bias (b) Item with negligible nonuniform L1 bias

31

Typical Item Curves for L1 bias (c) Removed item with large uniform L1 bias

32

L1 DIF analyses Greek versus Others Mantel-Haenszel DIF Results

Level of	Number of	List of	Flagged	Removed
DIF	items	Items	Items	Items
Negligible (A-level)	41			
Moderate (B level)	4	203,213, 219, 224	213	224 - already removed
Large (C-level)	none			none

L1 DIF analyses Greek versus Others (a) Unbiased item

L1 DIF analyses Greek versus Others (b) Item with moderate uniform DIF

L1 DIF analyses Greek versus Others (c) Item with moderate nonuniform DIF

L1 DIF analyses Greek versus Turkish Mantel-Haenszel DIF Results

Level of	Number of	List of	Flagged	Removed
DIF	items	Items	Items	ltems
Negligible (A-level)	39			
Moderate (B level)	5	213, 219, 316, 318,320	213	
Large (C-level)	1	224		224 - already removed

DIF analysis against age bias Examined population samples

Group name	Size	Percentage
Young (<= 20 years)	282	58.75%
<mark>Older</mark> (> 20 years)	197	41.25

DIF analysis against age bias Mantel-Haenszel age DIF Results

Level of	Number of	List of	Flagged	Remove
DIF	items	Items	Items	d Items
Negligible (A-level)	35			
Moderate (B level)	10	201,204, 301, 304, 310, 319, 320	304	
Large (C-level)	none			

DIF analysis against age bias (a) Unbiased item

DIF analysis against age bias (b) Item with moderate uniform age DIF

DIF analysis against education level bias

Examined population samples

Group name	Size	Percentage
Secondary	393	81.88%
Higher	87	18.12%

DIF analysis against edu@ari@hHeereszeli@ Results

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Negligible (A-level)	41			
Moderate (B level)	3	201, 308, 310	201, 310	
Large (C-level)	1	320		320 – already removed

Mantel-Haenszel DIF Results Summary Table

Level of DIF	Number of items	List of Items	Flagged Items	Removed Items
Bias Free or Negligible (A-level)	27	202, 205, 206,. 207, 208, 209, 210, 211, 212, 215, 216, 217, 218, 220, 221, 222, 225, 302, 303, 305,306, 309, 311, 314, 315, 316, 317,		
Moderate (B level)	16	201, 203, 204, 213, 214, 219, 223, 301, 304, 307, 308, 310, 312, 313, 319, 320	6 item as follows: 213, 219, 301, 304, 310, 320	1 item - 320
Large (C-level)	2	224, 318		2 items – 224 and 318

Mantel-Haenszel DIF Results Summary

(1) 27 out of 45 items (60%) are bias free or demonstrate negligible bias – ETS code A

(2) 16 out of 45 items (35,5%) demonstrate moderate bias – EST code B.

(3) 2 out of 45 items (4,5%) demonstrate large bias – EST code C.

Mantel-Haenszel DIF Results Summary

(4) 6 out of 45 items (13%), which have code B and appear in more than one bias list are flagged for further investigation.

(5) 2 out of 45 items (4,5%) demonstrating large bias – ETS code C, are removed from the test.

1. The conducted DIF analyses were directed to the most significant groups presented in the tested population.

2. The investigation revealed no or very small amount of DIF against the gender, age and education level.

This is a fact of great importance for us, because almost all of our individual test-takers fall into these groups.

3. Some negligible to moderate **DIF was detected against the** candidates having Turkish as L1. In fact, this was the largest group of students, taught at the **Department, and they did consist** 46% of the tested population.

This does not mean at all that the test items are flawed, but we do suggest that part of the problems are due to a combination of factors such as discipline, motivation to work hard, attendance in language classes, background, culture, etc.

4. We suggest that more information below the mean of the test score distribution would be desirable in future. This might be accomplished by substituting the easiest test items with items capable to enhance measurement precision for candidates tending to score much over the mean of the test score distribution.

Thank you for your attention

Paris, April 2014